If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-40x^2+1=0
We add all the numbers together, and all the variables
-31x^2+1=0
a = -31; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-31)·1
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{31}}{2*-31}=\frac{0-2\sqrt{31}}{-62} =-\frac{2\sqrt{31}}{-62} =-\frac{\sqrt{31}}{-31} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{31}}{2*-31}=\frac{0+2\sqrt{31}}{-62} =\frac{2\sqrt{31}}{-62} =\frac{\sqrt{31}}{-31} $
| 37=15+2u | | 4=14−2t | | -6=c/3+-8 | | y−7y−31 =3 | | 9.26=2z+5 | | 5(-5y+-1)=95 | | 11.4=2n−-6 | | 1/4(2x+70)=4x | | j/2−1=1 | | 2(x+8)=-16 | | x1/4=3 | | -x+40=-4x+90 | | 4x2-11x+7=0 | | 7=23−4n | | 6(36)-x+7=0 | | 3/4=6/x-6 | | 6q+-5q+-16q+12q=9 | | y=-6+42 | | -x+40=-4x=90 | | (r+4)÷4=5 | | 5-12x=115 | | 6u-5=25 | | 2x+x+5/6=7 | | 4y+31=7(y+7) | | 6u−5=25 | | 10+x+4x=45 | | 2t-6=-4 | | 0.80x+0.30(200)=0.40(92) | | 2t−6=-4 | | 2+-9r=38 | | 5+2u=9.2 | | 31−27=p |